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SUMMARY

The paper considers international per capita output and its growth using a panel of data for 102 countries
between 1960 and 1989. It sets out an explicitly stochastic Solow growth model and shows that this has quite
di�erent properties from the standard approach where the output equation is obtained by adding an error
term to the linearized solution of a deterministic Solow model. It examines the econometric properties of
estimates of beta convergence as traditionally de®ned in the literature and shows that all these estimates are
subject to substantial biases. Our empirical estimates clearly re¯ect the nature and the magnitude of these
biases as predicted by econometric theory. Steady state growth rates di�er signi®cantly across countries and
once this heterogeneity is allowed for the estimates of beta are substantially higher than the consensus in the
literature. But they are very imprecisely estimated and di�cult to interpret. The paper also discusses the
economic implications of these results for sigma convergence. # 1997 John Wiley & Sons, Ltd.

J. Appl. Econ., 12, 357±392 (1997)

No. of Figures: 2. No. of Tables: 7. No. of References: 26.

1. INTRODUCTION

The Solow±Swan neoclassical growth model, despite its age and recent developments in the
growth literature, continues to be of great theoretical and empirical interest. There have been a
large number of recent papers which test implications of this model, typically using data from the
Penn World Tables (PWT) (Summers and Heston, 1991). Prominent examples are Mankiw,
Romer, andWeil (1992), who use the data in cross-section, and Islam (1995), who uses the data in
panel. Associated with this there has been considerable discussion of the meaning and inter-
pretation of one of the central notions in the debate, namely `convergence'. The debate is
discussed, for example, by the contributors to the `Controversy' section of the July 1996
Economic Journal introduced by Durlauf (1996).

In this paper we use the results from an associated paper, Binder and Pesaran (1996) (BP) to
develop an empirical version of a stochastic Solow growth model.1 This di�ers signi®cantly from
the deterministic Solow model supplemented by an ad hoc stochastic speci®cation which has been
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characteristic of the previous literature. The stochastic model provides an alternative interpretation
of the results previously obtained in the literature and suggests that some of the conclusions
drawn from those results may be misleading. In addition to providing a tighter link between the
speci®cation of the economic theory and the empirical equation, we also use econometric theory
to analyse the properties of the available estimators. The predictions of the economic and
econometric theory for estimates of growth and convergence are then assessed on PWT data.

There are at least three notions of convergence in the literature. The ®rst, beta convergence,
considers the speed with which the logarithm of per-capital output, or output for short, tends to
its steady-state value from some initial condition. The estimate of the speed of convergence is
based on either the coe�cient of the lagged dependent variable in time-series or panel regressions
or the coe�cient of the logarithm of initial output in cross-section regressions. Convergence may
be unconditional or conditional on some country-speci®c variables, and could be to a common
or to a country-speci®c steady-state growth rate. Thus the steady states for the logarithm of per-
capita output may be identical (unconditional convergence with the same growth rate), parallel
straight lines (conditional convergence with the same growth rate), or unrelated (conditional
convergence with di�erent growth rates). We shall show the importance of allowing for the
heterogeneity of growth rates across countries in consistent estimation of the speed of converg-
ence coe�cient.

The second notion, sigma convergence, focuses on the behaviour of the cross-country variance
of output over time. As has been noted by Friedman (1992) and Quah (1993), beta convergence is
only a necessary and not a su�cient condition for output dispersion to reduce. Sigma convergence
is theoretically interesting if one believes that there is a common equilibrium across countries,
determined by shared global technologies and tastes, and that the speed of convergence to steady-
state outputs is the same across countries. Otherwise, the movement of the cross-section variance
of output over time will re¯ect initial conditions, the evolution of the dispersion of the country-
speci®c equilibria and the rate of adjustment within each country. Each country could be
converging to its own equilibrium, but cross-country equilibria could be diverging.

A third notion of convergence treats log per-capita output as an integrated variable and asks
whether di�erent countries share a common deterministic and/or stochastic trend. Bernard and
Durlauf (1995, 1996) and Evans and Karras (1996) use this notion. We shall consider the role of
such a common trend in our empirical work.

Section 2 sets out a stochastic version of the Solow growth model, drawing on BP where a
detailed analysis of the properties of this stochastic growth model is provided. In the stochastic
Solow model, the standard practice of linearizing around the deterministic steady state is not
valid, and the traditional convergence coe�cient no longer has its usual interpretation. The
coe�cient on which inference about convergence is normally based, namely that on lagged or
initial output, will in general re¯ect a mixture of the convergence coe�cient and the serial
correlation coe�cient of the technology shocks. Hence, a value of zero for the coe�cient could
arise either because of no beta convergence or a unit root in technology. Furthermore, the
disturbances of this equation will contain a moving-average term, making unit root inference
even more problematic than usual. In these circumstances, trying to determine whether there is a
unit root against the alternative of a root very close to unity is likely to be impossible with
available samples and techniques. Therefore, we conduct the analysis under both the assump-
tions of trend and di�erence stationarity.

Section 3 examines the econometric properties of the cross-section, pooled, and heterogeneous
panel estimators of the speed of convergence when output is trend stationary but where allowance
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is made for the possibility of heterogeneity of growth rates across countries. It shows that all these
estimators are subject to important biases.

Section 4 presents empirical results under the various speci®cations suggested by the
theoretical discussion. It shows that the estimates of the speed of convergence are very sensitive to
the treatment of heterogeneity, particularly in the growth rate, and unrestricted estimates show
much faster convergence than conventional estimates obtained, implicitly or explicitly, under the
assumption of a homogeneous growth rate across countries. Despite this much faster estimated
speed of convergence, we cannot reject the null of a unit root in output. We then discuss the
implications of these results for sigma convergence.

The main results and conclusions of the paper are summarized in Section 5. These emphasize
the importance of the heterogeneity in steady-state growth rates across countries (whether out-
puts have a unit root or not), both in its e�ect on the standard econometric approaches to
estimating beta convergence and in its implications for sigma convergence. While the hetero-
geneity of growth rates is recognized in the literature, the results of this paper provide a formal
statistical analysis to con®rm its pervasiveness as well as establishing its importance for economic
and econometric analysis of growth empirics.

The empirical analysis of the paper promotes the use of time-series methods applied to the
individual countries' output series, treated as a heterogeneous panel. The application of time-
series methods enables us to distinguish between the convergence of countries' outputs to their
steady-state growth paths and the cross-sectional evolution of the paths themselves. Estimating
cross-section regressions, or regressions using observations based on data averaged over long
periods, makes it impossible to consider either the complex dynamic adjustments involved in the
countries' output processes or the heterogeneity of growth rates across countries. By basing our
empirical analysis on a stochastic version of the Solow model we are also able to provide a
structural interpretation of the dynamics of the output process, and establish an explicit link
between the stochastic processes of output and technology; in particular showing that the
presence of a unit root in output does not necessarily contradict the stochastic version of the
Solow model.

2. THE STOCHASTIC GROWTH MODEL

Consider a set of countries, i � 1; 2; . . . ;N, over a number of years, t � 1; 2; . . . ;T . Output in
each country, Yit, is produced by physical capital, Kit, and labour employed, Lit, through a
Cobb±Douglas production function

Yit � K
a
it�AitLit��1ÿa� 0 < a < 1

Ait represents technology and endowment while capital stock is given by

Kit � I i;tÿ1 � �1 ÿ d�Ki;tÿ1

where d is the rate of depreciation. Investment, I it � siYit, and the savings rate, si, is constant in
each country. The evolution of capital per e�ective labour unit, kit � Kit=AitLit, is then given by

D log kit � ÿD log�AitLit� � log�sikÿ�1ÿa�i;tÿ1 � 1 ÿ d� �1�
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The stochastic processes determining technology and employment are

log Ait � a0i � git � uait �2�
uait � raiuai;tÿ1 � eait jrai j4 1 �3�

log Lit � l0i � nit � ubit �4�
and

ubit � rbiubi;tÿ1 � ebit j rbi j4 1 �5�
Both shocks to technology and labour inputs, uait and ubit, allow for the possibility of a unit root.
The technology shock summarizes all the factors that might shift total factor productivity, and
the employment shock summarizes the outcome of the interaction between labour demand and
supply in¯uences. We have assumed a common production function parameter, a, and deprecia-
tion rate, d, but all the other parameters, and in particular the initial endowment, a0i, and the
growth rate of technology, gi, are allowed to di�er across countries.2 The parameter variations
across i play a central role in the empirical analysis, but for clarity of exposition we shall ®rst
develop the model for a single country dropping the i subscript.

In deriving output equations to be used in the empirical analysis, we shall follow the standard
procedure which linearizes a deterministic analogue of equation (1), by expanding it around the
steady-state value of the e�ective capital±labour ratio and then substituting for capital and
technology in terms of output to derive a univariate representation for output. The di�erence is
that we shall apply this procedure to a stochastic rather than a deterministic growth model. Using
equations (2) and (4) in equation (1) yields

D log kt � ÿ�n � g� ÿ Dut � log�skÿ�1ÿa�tÿ1 � 1 ÿ d� �6�
where ut � uat � ubt is a composite shock. We linearize equation (6) around E�log�k1��, where
k1 is the random variable that underlies the steady-state distribution of kt. BP show that if the
distribution of the shocks is appropriately truncated on the left so that large negative shocks are
excluded, such a steady-state distribution exists and discuss the conditions under which it has
moments, showing in particular that E�log�k1�� will depend on all the moments of ut.

Since in steady state the expected value of D log kt is zero, then taking expectations of
equation (6) we also have

n � g � E�log�skÿ�1ÿa�1 � 1 ÿ d�� �6a�

Notice that the non-linear term in equation (6a) can be written as

logfseÿ�1ÿa�log�k1� � 1 ÿ dg
which is easily established to be a convex function of log�k1�. Therefore, by Jensen's inequality

n � g � E�log�seÿ�1ÿa�log�k1� � 1 ÿ d��
� logfseÿ�1ÿa�E�log�k1�� � 1 ÿ dg � h �6b�

2 Evans (1996a) notes that the share of capital di�ers substantially across countries, but the identi®cation of a with the
share of capital may be problematic.
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where h is a strictly positive number. The size of h depends on the degree of the curvature of the
function in equation (6a) and the distribution of the shocks. Rewriting equation (6b) in terms of
E�log�k1��, we obtain:

E�log�k1�� �
1

1 ÿ a
�log�s� ÿ log�en�gÿh ÿ 1 � d�� �7�

which can be used in the linearization of equation (6). Speci®cally, denoting the error of
approximation by xt, the expansion of the non-linear term in equation (6) around E�log�k1��
yields:

log�skÿ�1ÿa�tÿ1 � 1 ÿ d� � g ÿ �1 ÿ l�log ktÿ1 � xt �8�

where

1 ÿ l � s�1 ÿ a� eÿ�1ÿa�E�log�k1��
seÿ�1ÿa�E�log�k1�� � 1 ÿ d

> 0

and

g � log�seÿ�1ÿa�E�log�k1�� � 1 ÿ d� � �1 ÿ l�E�log�k1��

Using equation (7), �1 ÿ l� and g simplify as follows:

1 ÿ l � �1 ÿ a��1 ÿ �1 ÿ d� eÿ�n�gÿh��

and

g � n � g ÿ h ÿ �1 ÿ �1 ÿ d� eÿ�n�gÿh���log�en�gÿh ÿ 1 � d� ÿ log�s��

Also, for small values of n, g, d, and h,

1 ÿ l � �1 ÿ a��n � g � d ÿ h�

and

g � �n � g ÿ h� � �n � g � d � h��log s ÿ log�n � g � d ÿ h��

The linearization will only provide a reasonable approximation for small deviations from the
mean of the distribution and it loses the interaction that exists between shocks and the trend
which is an inherent feature of the non-linear model. The deterministic growth literature expands
the non-linear expression around log�k��, where k� is the steady-state value of equation (6) with
ut � 0. In this case, �1 ÿ l� reduces to the familiar measure of beta convergence in the deter-
ministic case when h � 0 (see, for example, Barro and Sala-i-Martin, 1995, p. 36). However, there
is no reason to believe that, in general, h will be small, since the mean of the stochastic steady state
will not correspond to the deterministic solution. Nor is there any reason to assume that the error
of approximation, xt, will be white noise. Typically, it will be serially correlated and its variance
will go to zero as the steady-state distribution is approached.
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Denote the logarithm of per-capita output, log�Yt=Lt�, by xt, and log�At� by at. Then the
production function can be written as

xt � at � a log kt

and using equations (6) and (8), and assuming the error of approximation is relatively
unimportant, we obtain the following relationship for the growth rate:

Dxt � Dat � a ÿ�n � g� ÿ Dut � g ÿ �1 ÿ l� xtÿ1 ÿ atÿ1
a

h i
which involves the unobservable technology variable, at. However, at can be eliminated using
equations (2) and (3) to get:

xt � m � �1 ÿ l�gt � lxtÿ1 � et �9�
where

et � �1 ÿ a�Duat ÿ aDubt � �1 ÿ l�ua;tÿ1 �9a�
and

m � lg ÿ ah � �1 ÿ l� a0 �
a

1 ÿ a
�log s ÿ log�n � g � d ÿ h��

n o
�9b�

which, apart from the structure of the composite error term, et, gives the standard result when
h � 0. Equation (9a) makes it clear that technology and employment shocks have quite di�erent
impacts on the output process. In particular, even if there is a unit root in the time-series process
for employment, this will not cause a unit root in the output process since the employment shock
only appears in equation (9a) as a ®rst di�erence. The same, however, is not true of the techno-
logical shock, and a unit root in the process generating technology shocks also causes a unit root
in the output process.

To see this, using equations (3) and (5), we can substitute for Dujt, j � a; b, in equation (9a) to
obtain

et � ÿ��1 ÿ a��1 ÿ ra� ÿ �1 ÿ l��ua;tÿ1 � a�1 ÿ rb�ub;tÿ1 � �1 ÿ a�eat ÿ aebt

In the context of the Solow growth model, where 0 < a < 1 (and hence 0 < l < 1), the output
process will have a unit root only if et has a unit root. Suppose now that there is a unit root in the
labour input process, but not in technology (i.e. rb � 1, j ra j < 1�. Then et will be a linear
function of stationary processes ua;tÿ1, eat, and ebt, and hence will be stationary itself. In contrast,
when ra � 1, then Duat � eat, and

et � �1 ÿ l�ua;tÿ1 � a�1 ÿ rb�ub;tÿ1 � �1 ÿ a�eat ÿ aebt

Hence, fetg will contain a unit root (through the unit root in ua;tÿ1�, irrespective of whether
rb � 1 or not. In what follows, to simplify the analysis, we assume rb � 1, which seems reason-
able in view of the time series evidence on employment, and write r for ra. Equation (9) then
becomes

xt � m � �1 ÿ l�gt � lxtÿ1 ÿ ��1 ÿ a��1 ÿ r� ÿ �1 ÿ l��ua;tÿ1 � �1 ÿ a�eat ÿ aeb;t �10�
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Substituting uat and ua;tÿ1 from this equation in (3) we obtain:

xt � �m�1 ÿ r� � r�1 ÿ l�g� � �1 ÿ l��1 ÿ r�gt � �l � r�xtÿ1 ÿ lrxtÿ2
� �1 ÿ a�eat ÿ �l ÿ a�ea;tÿ1 ÿ aebt � areb;tÿ1 �11a�

Under certain restrictions on the correlation between the employment and technology shocks, the
error term in equation (11a) will have a ®rst order moving-average structure which we represent
by et ÿ fetÿ1, where et is a serially uncorrelated composite error term, and f, the moving-average
coe�cient, is a non-linear function of the variance±covariances of technology and employment
shocks and the other parameters of the model. For small correlations between the two shocks,
conventional estimates of the parameters (e.g. a � 0�33, n � 0�01, g � 0�02, d � 0�05 and r � 0�9�
and a small value of h, the moving-average term is likely to be negative and close to minus 1.3

Thus we can write the output equation with its MA component having a negative coe�cient as

�1 ÿ lL��1 ÿ rL�xt � �m�1 ÿ r� � r�1 ÿ l�g� � �1 ÿ l��1 ÿ r�gt � �1 ÿ fL�et �11b�

where L is the lag operator. This equation clearly shows that in a stochastic version of the Solow
growth model, the linearized output process follows an ARMA(2,1). A third equivalent form is
the augmented Dickey±Fuller representation:

Dxt � �m�1 ÿ r� � r�1 ÿ l�g� � �1 ÿ r��1 ÿ l�gt
ÿ �1 ÿ l��1 ÿ r�xtÿ1 � lrDxtÿ1 � et ÿ fetÿ1 �11c�

which establishes a direct link between the null hypothesis of a unit root in the output process and
the underlying parameters of the stochastic Solow growth model.

This formulation has a number of important implications. First, 1 ÿ l � �1 ÿ a� �g � n �
d ÿ h� is not the same as the traditional speed of convergence coe�cient unless h � 0. The term h
will depend on all the structural parameters of the model and the moments of ut, which could
vary over countries and perhaps over time. Second, l is not separately identi®ed from r, since
they enter the autoregressive part of equation (11b) symmetrically. Third, the presence of both
autoregressive and moving-average components in the output process means that there are likely
to be common factors, thus leading to multiple maxima in the likelihood function. Fourth, using
the ADF representation (11c), the null hypothesis that there exists a unit root in output is given
by �1 ÿ r��1 ÿ l� � 0, or the product of three small numbers, �1 ÿ r�, �1 ÿ a� and �g � n �
d ÿ h�, being equal to zero. Thus, even when there is both convergence (i.e. 0 < l < 1� and a
stationary technology process � jr j < 1�, the coe�cient of the lagged dependent variable in the
ADF regression (11c) is likely to be indistinguishable from zero with the samples and techniques

3 If the covariance between employment and technology shocks is zero, then equating E�et� and E�etetÿ1� with the
corresponding expressions for the errors in equation (11a), provides the following:

f

1 � f2
�

l ÿ a
1 ÿ a

� �
� r

a
1 ÿ a

� �2
R

1 � l ÿ a
1 ÿ a

� �2

��1 � r2� a
1 ÿ a

� �2
R

where R is the ratio of the variance of technology shocks to that of employment shocks. Noting that
�l ÿ a�=�1 ÿ a� � 1 ÿ �n � g � d ÿ h�, then with conventional values of n, g, d, a, and r, and assuming h is relatively
small we have f=�1 � f2� � 1

2 and f � 1.
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available. Fifth, it is clear from regression (11c) that a unit root in output is not evidence against
the neoclassical model. The coe�cient of xtÿ1; �1 ÿ r��1 ÿ l�, could be zero either because of
lack of convergence, namely a � l � 1, or because of a unit root in technology, r � 1. Finally,
the presence of the MA error in the output process complicates the problem of testing for unit
roots since it is well known that unit root inference in the presence of MA errors with a negative
root close to unity particularly lacks power.
In some circumstances, it may be possible to reduce the ARMA(2,1) process to an AR(1)

process by eliminating a possible common factor from the model. If we can treat �1 ÿ lL� and
�1 ÿ fL� as approximately equal in equation (11b), and remove the common factor we get

xt � d � �1 ÿ r�gt � rxtÿ1 � et �12a�
where

d � m�1 ÿ r�
1 ÿ l

� r ÿ l

�1 ÿ l�2
� �

g

which is the standard equation, except that the coe�cient of the lagged dependent variable is
interpreted not as the speed of convergence but the serial correlation coe�cient in the technology
process. Alternatively, technology may be highly correlated so that �1 ÿ rL� is also of the same
order of magnitude as �1 ÿ fL� and we might remove this common factor to obtain

xt � m � �1 ÿ l�gt � lxtÿ1 � et �12b�
In this case, the coe�cient of the lagged dependent variable provides a measure of the speed of
convergence, and this is the interpretation typically adopted in the literature. In the empirical
section below, we test for the presence of a common factor. When the common factor can be
removed, we adopt the interpretation in equation (12b) for comparability with the literature.
However, given the complexity of the univariate dynamics of output, we should emphasize that
this is not the only possible interpretation.

For estimation, we need to reintroduce the distinction between countries, i � 1; 2; . . . ;N.
Suppose that we can remove a common factor from equation (11b) and interpret the model in
terms of (12b), which we rewrite as

xit � mi � yit � lixi;tÿ1 � eit
i � 1; 2; . . . ;N

t � 1; 2; . . . ;T
�13�

where yi � �1 ÿ li�gi, and from equation (9b),

mi � ligi ÿ ahi � �1 ÿ li� ai0 �
a

1 ÿ a
�log si ÿ log�ni � gi � d ÿ hi��

n o
To separate the e�ects of li and gi, it is convenient to rewrite equation (13) as

xit � ci � git � uit �14�
uit � liui;tÿ1 � eit �14a�

where ci, the deterministic component of initial output, is de®ned by

ci � ai0 �
a

1 ÿ a
�log si ÿ log�ni � gi � c ÿ hi�� ÿ

ahi
1 ÿ li

�14b�
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The next section discusses estimation of these equations. For purposes of estimation also note
that

mi � �1 ÿ li�ci � ligi �15�
In discussing cross-sectional properties of the model we also use the notation x�i0 for ci, to
highlight the fact that ci is the deterministic component of the initial output, xi0.

3. ECONOMETRIC CONSIDERATIONS

The N � T system of equations in (13) is a simple example of the dynamic heterogeneous panels
examined in Pesaran and Smith (1995) and Pesaran, Smith, and Im (1996). These papers discuss
four ways such panels can be examined empirically: averaging the data over time and estimating a
cross-section across groups; averaging the data over groups and estimating an aggregate time
series; pooling the data assuming coe�cient homogeneity; or estimating the coe�cients of
individual time series regressions and examining the distribution over groups of these estimates.
We shall examine the econometric properties of these four approaches.

3.1. Cross-section Data

The pure cross-section approach involves averaging the observations for each country over time
and typically regressing the logarithm of per capita output on regressors such as ln�si� and
ln�ni � g � d�. Such cross-sectional regressions tell us nothing about the dynamic process of
growth or convergence. To make inferences about convergence much of the literature estimates a
hybrid cross-section, `Barro', regression by including initial output to pick up dynamics. To
examine the properties of this procedure assume a common l �li � l� and iterate equation (13)
forwards from t � 1 to t � T to obtain

xiT ÿ xi0 � ÿ�1 ÿ lT �xi0 � �1 ÿ lT �x�i0 � Tgi � xiT �16�

where x�i0 is the deterministic component of initial output, de®ned by (14b), and

xiT �
XTÿ1
j�0

ljei;Tÿ j

Analogues of equation (16) have been widely investigated using cross-country and regional data.
This literature assumes a deterministic underlying growth model, sets hi � 0 and ignores the
possible heterogeneity of gi, the rate of growth of technology.4

While it is known that this procedure yields a biased estimate of l (see, for example, Evans,
1996a), the number of di�erent factors that could give rise to such a bias has not been recognized.
Appendix A derives an explicit formula for the asymptotic (large N) bias of the estimated speed
of convergence based on equation (16), under the assumption that there is a common l, but
otherwise using very general assumptions. The expression for the asymptotic bias of estimating

4 The assumption that hi � 0 is particularly important in cross-sectional analysis. In panel or time-series analysis the
intercepts take account of the variations in hi across i. For a cross-sectional analysis where the empirical implications of a
non-zero hi are investigated see BP.
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lT using Barro's regression (16) is derived in equation (A16), which is reproduced here for
convenience:

Plim
N!1

�clT � ÿ lT �
�1 ÿ lT �s2�0 � Ts�g �

XT
j�1

X1
k�0

lTÿ j�k �g� j � k�

s2�0 �
1

1 ÿ l2

� �
�g�0� � 2

X1
k�1

lk �g�k�
( ) �17�

This shows that the magnitude of the bias depends on: �g�k�, the kth-order autocovariance of the
shocks averaged over i; s2�0, the cross-section variance of the deterministic component of initial
output, x�i0 de®ned by equation (14b), and s�g, the covariance between the deterministic compo-
nent of initial output, x�i0, and the growth rate of technology, gi.

5 This last term, which has
previously been neglected, plays a crucial role since it is multiplied by T. The bias will either
increase or decrease with the span of the regression, depending on whether s�g is positive or
negative. It is highly unlikely for this covariance to be zero, since as can be seen from equation
(14b), x�i0 is itself a function of gi.

Even in the very unlikely event that the growth rates of technology were the same across
countries and therefore uncorrelated with the deterministic component of initial output, and eit's
were serially uncorrelated (so �g�k� � 0 for k > 0 and �g�0� � t2�, Barro regressions will still yield
biased estimates and the size of the bias will depend inversely on the ratio of the long-run time-
series variance to the cross-section variance �t2=�1 ÿ l2��=s2�0. Empirical estimates indicate that
this ratio is quite small even in `conditional' Barro regressions, thus the bias is likely to remain
serious even in this rather special case. Estimates of the magnitude of the bias based on panel
regressions is discussed in Section 4.2.

3.2. Pooled Data

Under the assumption of a common growth rate �gi � g�, a common rate of convergence
�li � l�, and a common variance for eit across i, the appropriate way to estimate l in equation
(13) is to pool the data and use the traditional pooled ®xed-e�ects estimation procedure. This
approach has been followed in a recent paper by Islam (1995) who estimates an output equation
using the Summers and Heston data, averaged over ®ve ®ve-yearly time spans.6 For the ®xed-
e�ects estimates (provided in Table IV of his paper), Islam obtains implied estimates of l of
0.9533 (0.0088), 0.9542 (0.0097), and 0.9074 (0.0157) for his Non-Oil, Intermediate and OECD
country groupings, respectively.7 These estimates imply faster rates of convergence than those
obtained from Barro-type regressions, but convergence would still take place only after many
years. Similar conclusions are obtained by Nerlove (1996) working in the context of a homo-
geneous dynamic random e�ects model. However, the validity of these estimates critically
depends on the assumption of the presence of common growth rates across countries. The pooled
®xed-e�ects estimator will yield inconsistent estimates of l if the gi di�er across countries even if

5 The derivation of equation (17) also allows for the possibility of a common (stochastic) component in the process
generating the shocks, eit. See equation (18).
6 Other recent studies that also make use of panel data methods in their analysis of the growth process are Canova and
Marcet (1995) and Miller (1995).
7 Note that the implied estimates of the convergence rate reported in Table IV of Islam (1995) refer to the value of
�1 ÿ l� in our notation.
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N and T are large. This is because imposing homogeneity of growth rates across countries when it
is false adds a term, �gi ÿ g�t, to the disturbance for each country. This term is serially correlated
with a unit coe�cient, causing the dynamic ®xed-e�ect estimator to be inconsistent for the
reasons discussed in Pesaran and Smith (1995). The derivations in that paper assume that the
regressors are stationary and are thus not appropriate to this case. However, Appendix B derives
the appropriate asymptotic limits of the ®xed-e�ect estimators of l and y, denoted by l̂FE and
ŷFE, respectively, under heterogeneity of growth rates. These are:

Plim
N;T!1

�l̂FE� � 1 Plim
N;T!1

�ŷFE� � 0

irrespective of their true values, or whether N or T is allowed to go to in®nity ®rst.
In small samples, this upward heterogeneity bias will be combined with the familiar

downward-lagged dependent variable bias. Under slope homogeneity, the ®xed-e�ect estimator
is inconsistent for N large and ®xed T . There are a variety of instrumental variable estimators
available in the literature which are consistent for ®xed T and large N under slope homogeneity
(a review is provided in Baltagi (1995, Chapter 8)). However, in general these estimators are not
consistent under slope heterogeneity, as is discussed in Pesaran, Smith, and Im (1996). In fact,
when slope coe�cients di�er across groups, there exists no consistent instrumental variables
estimator (for a proof, see Pesaran and Smith, 1995).

3.3. Heterogeneous Panel Data

Under slope heterogeneity, one appropriate estimator is the mean group estimator. The equation
is estimated separately for each country and the distribution of the coe�cients examined. Evans
(1996a) uses this procedure allowing for heterogeneity in li, but not in gi. However, the small-
sample downward bias in the coe�cient of the lagged dependent variable remains a serious
problem. Since each of the country estimates are subject to this bias, it will not be reduced by
averaging across countries or pooling. Evans tries to deal with this problem by using a median
unbiased estimator, but such estimators may have a large variance.
Another important consideration in the analysis of dynamic heterogeneous panels is the

possibility that the errors in equations (13) or (14) are correlated across countries. Such cross-
sectional error correlations must be taken into account in empirical analysis. A simple and
e�ective procedure would be to demean the observations before estimation. The demeaning
procedure can be justi®ed in the context of equation (14) if li � l, and the cross-sectional
dependence of eit across i can be speci®ed by the two-factor model:

eit � Zt � nit �18�
where Zt is a time-varying common (stochastic) component, and nit is the country-speci®c
disturbance term assumed to be independently distributed across i. For this speci®cation, the
demeaned version of equation (13) is given by

xit ÿ �xt � �mi ÿ �m� � �yi ÿ �y�t � l�xi;tÿ1 ÿ �xtÿ1� � nit ÿ �nt �19�
where

�xt � N
ÿ1XN

i�1
xit; �m � N

ÿ1XN
i�1

mi
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etc. It is now easily seen that for large enough N, the demeaned disturbances eit ÿ �et � nit ÿ �nt
are uncorrelated across i. In the case where eit's are normally distributed, the errors in the
demeaned regression will also be independently distributed across i, for large N.

Analogous to equation (14), it is also possible to rewrite equation (19) as

xit ÿ �xt � �ci ÿ �c� � �gi ÿ �g�t � uit ÿ �ut �20�

where

uit ÿ �ut � l�ui;tÿ1 ÿ �utÿ1� � nit ÿ �nt �20a�

and ci is de®ned as before by equation (14b). Finally, note that estimation of the demeaned
regressions (19) or (20) yield estimates of ci ÿ �c; gi ÿ �g, etc. To obtain estimates of ci, gi, and mi
we also need to estimate the aggregate equation

�xt � �c � �gt � �ut �21�

where

�ut � l �utÿ1 � �et �21a�
Estimates of ci and gi can now be recovered from those of ci ÿ �c and gi ÿ �g in equation (20), and �d
and �g in (21). The estimate of mi can then be obtained using equation (15).

The above derivations clearly show that the demeaning procedure works exactly when
equation (18) holds and li � l. However, even if li 's di�er across countries, but not markedly so,
demeaning before estimation can still help remove some of the correlations that may exist across
eit's. Islam (1995) and Evans and Karras (1996) also demean the data in this way, but motivate it
as removing a common, possibly stochastic, technology trend. Neither allow for di�ering
country-speci®c growth rates as do equations (19) or (20).

This brief econometric review suggests that there are very real di�culties in obtaining precise
estimates of the speed of convergence. If the Solow model is true with a common growth rate of
technology across countries, the estimate of l from Barro cross-section-type regressions will be
biased upwards, suggesting slower convergence than is the case, and the appropriate estimator to
be used is the pooled ®xed-e�ect estimator. But if growth rates di�er, the estimates of l from the
pooled ®xed-e�ect procedure will tend to unity as N and T grow, irrespective of the true value of
l. When the growth rates di�er, the mean group estimator is appropriate, but the estimate of the
mean li across i from this procedure is subject to a downward bias in small samples and this bias
can be important even for T as large as 30.

4. EMPIRICAL ESTIMATES OF THE SOLOW MODEL

This section presents estimates of the theoretical models of the univariate processes for the
logarithm of per-capital output across countries described in Section 2. The parameters of
interest are the country-speci®c technology growth rates, gi, and the speed of adjustment to
steady state, 1 ÿ li. Di�erent country-speci®c intercepts are always included which will capture
such factors as di�erences in steady-state growth rates, rates of growth of population, initial
endowments, di�erences in hi, etc. We shall conduct inferences using three di�erent speci®ca-
tions. The most general is the ARMA(2,1) with trend, given in equation (11b). However, the
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theory suggests that the MA coe�cient is likely to be close to minus 1, and that a common factor
could be removed. Following this route gives the second speci®cation, the stationary AR(1)
model with trend given by equation (13) or, equivalently, by (14). However, the theory suggests
that it may be di�cult to reject the null of a unit root in this speci®cation. Therefore this
hypothesis will be tested and the third speci®cation will impose the unit root restriction in order
to examine the robustness of our main conclusion concerning growth rate heterogeneity to the
unit root speci®cation.

4.1. Data

In testing the theory, like many others, we will use the Penn World Tables (PWT), described in
Summers and Heston (1991).8 We shall examine 102 non-oil-producing countries and two
subsets of them (an intermediate group of 61 countries which excludes countries which are small
or for which the quality of the data are thought to be poor, and a group of 22 OECD countries9).
For these countries there are data from 1960 to 1989. The dataset is constructed on the basis of
information both from national accounts and from a set of benchmark United Nations Inter-
national Comparison Programmes. The focus of the analysis is on the logarithm of real per capita
GDP in these country groupings over the period 1960±89, and this is measured by national
accounts data which is scaled to ensure comparability across countries in 1985. The output
equations are then estimated over the period 1965±89 (inclusive) to ensure comparability across
di�erent dynamic speci®cations.

As Heston and Summers (1996) emphasize, there are many de®ciencies in this data,
particularly for the poorer countries and those that have never been benchmarked. In some cases,
the annual data which we use are interpolated. However, the fact that very similar features emerge
from all three samples, with very di�erent degrees of measurement problem, suggests that our
main conclusion, the sensitivity of convergence estimates to the treatment of growth rate hetero-
geneity, is robust to such de®ciencies.

4.2. The Trend Stationary Case

The most general model we consider is the ARMA(2,1) process with a linear trend. This was
estimated for the 102 countries and the theory's prediction of an MA root of ÿ1 was con®rmed
in 76 of the countries, with no obvious pattern across subsamples.10 Of the remaining
26 countries, six have a root at �1, while of the 20 countries with an interior maximum,
the common factor restriction was rejected in eight cases. Therefore, only eight out of the 102
countries seem to require an ARMA(2,1) speci®cation. These countries were Rwanda, Costa
Rica, El Salvador, Peru, the Phillipines, Iceland, Norway, and Sweden. Given these results, we
decided to work with the more parsimonious AR(1) model containing a linear trend, and thus
eliminated the common factor that seems to exist in the ARMA(2,1) speci®cations.

Four variants of the AR(1) model were estimated. Table I gives the unrestricted model
where both gi and li are allowed to di�er across countries. Table II gives the results when gi is

8 Version 5.0 of the PWT is described in Summers and Heston (1991). The PWT dataset that we use is Version 5.6, dated
20 November 1994, and the measure of per-capita output we use is labelled RGDPL.
9 It is worth noting that the OECD is a club which countries join only when they become rich. Therefore, analysis of the
growth in per capita output in this group may be subject to considerable sample selection bias, and should be treated with
caution.
10 For example, 15 of the 22 OECD countries had an MA root of ÿ1.
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constrained to be the same across countries, Table III when li is the same, and Table IV when
both gi and li are the same. Estimation is carried out by the exact maximum likelihood method,
constraining li to be less than unity, and allowing the variances to di�er across countries.
Appendix C describes the procedure in detail. Ordinary Least Squares (OLS) estimates were
broadly similar except that the OLS estimates of li were sometimes greater than unity. The
estimates in Table IV are subject to the same slope coe�cient restrictions as the traditional ®xed-
e�ects panel estimator, but allow for the possibility of heterogeneity in variances of the shocks

Table I. Summary statistics of estimated coe�cients from the Solow growth model (calculated using
demeaned data)

m̂i l̂i ĝi t̂i

Non-oil countries �N � 102�
�LL � 4495�84�
Mean 0.3255 0.7013 0.01742 0.04985
(Standard error) (0.0335) (0.0183) (0.0020) (0.0028)
Median 0.3485 0.7462 0.01924 0.03990
Standard deviation 0.3370 0.1825 0.02008 0.02775
Minimum ÿ1�0415 0.0412 ÿ0�03106 0.01305
Maximum 1.0283 0.9253 0.07411 0.15945

Intermediate group of countries �N � 61�
�LL � 3078�15�
Mean 0.4078 0.7370 0.02243 0.03757
(Standard error) (0.0344) (0.0229) (0.0022) (0.0024)
Median 0.4050 0.7877 0.02242 0.03514
Standard deviation 0.2667 0.1773 0.01698 0.01865
Minimum ÿ0�7972 0.1549 ÿ0�02085 0.01165
Maximum 1.0781 0.9254 0.07419 0.09923

OECD countries �N � 22�
�LL � 1404�98�
Mean 0.6806 0.7619 0.02652 0.02075
(Standard error) (0.0246) (0.0245) (0.0017) (0.0015)
Median 0.7038 0.7891 0.02623 0.02017
Standard deviation 0.1153 0.1121 0.00782 0.00691
Minimum 0.3046 0.5452 0.01238 0.00978
Maximum 0.8076 0.9142 0.04548 0.03612

Notes :
The estimates in this table are obtained by ®rst estimating the demeaned regression equations (see equations (20) and (20a)
in the text):

xit ÿ �xt � cdi � gdi t � uit ÿ �ut where uit ÿ �ut � li�ui;tÿ1 ÿ �utÿ1� � nit ÿ �nt

separately for each country �i � 1; . . . ;N�, over the period t � 1965; . . . ; 1989 by the exact ML method, where xit is the
logarithm of the per capita output in country i. Noting that cdi � ci ÿ �c, gdi � gi ÿ �g, the estimates ĉdi and ĝdi
were then used in conjunction with the ML estimates of �c and �g (denoted by �̂c and �̂g) in equation (21) to compute the
estimates of ĉi � ĉdi � �̂c and ĝi � ĝdi � �̂g. Finally, estimates of mi were obtained using equation (15), and ti are estimated
as standard errors of the individual country demeaned output equations. Computation of the ML estimates were carried
out using the `inverse interpolation' method (see Pesaran and Slater, 1980). LL is the maximized value of the log-
likelihood function. The `mean', `median', `standard deviation', `minimum', and `maximum' statistics refer to the cross-
country distribution of the estimated parameters. The standard error of the mean values of the coe�cients estimated
across countries is based on the country-speci®c parameter estimates and is calculated using the non-parametric
procedure described in Pesaran, Smith, and Im (1996).
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across countries. The equations were estimated in the form of equation (20), using demeaned data.
Log-likelihood ratio tests indicated that demeaning always led to a signi®cant improvement in ®t.

Table I indicates that the average growth rate increases from 1.7% in the full sample, to 2.2%
in the intermediate and 2.6% in the OECD sample. The standard deviation of the growth rate
falls across samples, as does the average standard error of the equation, which is just under 5% in
the full sample and just over 2% in the OECD. In the light of the consensus in the literature that
the speed of convergence is very low (e.g. Barro and Sala-i-Martin, 1995, suggest it is around
2%), the most striking feature of the table is the estimate of the average value of li. The estimate
of 0.70 in the full sample implies a speed of convergence of 30%, although this is convergence to a
country-speci®c steady state. The estimates for the intermediate group of countries, at 26%, and
for the OECD countries, at 24%, are also much higher than the consensus estimates. Using the
original, rather than demeaned, data gave slightly slower speeds of convergence with average
values of the estimated li's rising from 0.76 in the full sample to 0.81 in the OECD.

The heterogeneity of growth rates is very evident from the descriptive statistics in Table I. In the
full sample average steady-state growth rates over this period range from minus 3% to positive
7%. Comparisons of results in Tables I and II indicate that the restriction of homogeneous

Table II. Summary statistics of estimated coe�cients from the Solow growth model under H0: gi � g
(calculated using demeaned data)

m̂i l̂i ĝi t̂i

Non-oil countries �N � 102�
�LL � 4077�33�
Mean 0.3727 0.8993 0.02389 0.05594
(Standard error) (0.0134) (0.0104) (0.0030)
Median 0.3771 0.9357 0.04863
Standard deviation 0.1387 0.1045 0.03030
Minimum ÿ0�2575 0.4487 0.01302
Maximum 0.8296 0.9937 0.17452

Intermediate group of countries �N � 61�
�LL � 2850�26�
Mean 0.4039 0.8979 0.02466 0.04196
(Standard error) (0.0167) (0.0163) (0.0027)
Median 0.4070 0.9418 0.03804
Standard deviation 0.1296 0.1263 0.02100
Minimum ÿ0�0740 0.3178 0.01152
Maximum 0.8328 0.9938 0.10912

OECD countries �N � 22�
�LL � 1339�56�
Mean 0.6716 0.9018 0.02540 0.02255
(Standard error) (0.0180) (0.0198) (0.0017)
Mean 0.6886 0.9343 0.02113
Standard deviation 0.0844 0.0928 0.00796
Minimum 0.3090 0.6869 0.00957
Maximum 0.7394 0.9904 0.04066

Notes :
Estimated coe�cients relate to regression equations of the form given in the notes to Table I, but estimated by the exact
ML method subject to the restriction gi � g, for all i.
See notes to Table I for further details.
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growth rates is strongly rejected, with log-likelihood ratio (LR) statistics of 837.02, 455.78, and
130.84 in the three samples. These are distributed as Chi-squared variates with 101 (124.3), 60
(71.08), and 21 (32.67) degrees of freedom, respectively. The 95% critical values are in brackets.
Comparison of Tables I and III shows that the evidence against homogeneity in speeds of
adjustment is less strong, with LR statistics of 139.88, 77.62, and 16.62 with the same degrees of
freedom. Thus homogeneity in speeds of adjustment is not rejected in the case of the OECD
sample.

As the theory in Appendix B indicates, imposing homogeneity pushes the estimate of l towards
unity, and substantially reduces the measured speed of convergence. In the empirical applications
imposing equality of growth rates raises the average estimate of li to 0.90 in the full sample. With
both common g and l, the estimates of l increases to 0.96, which is comparable to those obtained
in panel studies that have imposed homogeneity of technology growth rates (as in Islam, 1995,
and Nerlove, 1996). This suggests that the low estimates of the speed of convergence obtained
elsewhere are a direct result of the heterogeneity bias.
As Appendix A shows, the cross-section estimates are also biased. It is instructive to use the

formula for the bias in equation (17) and the empirical estimates in Table III, which assumes a

Table III. Summary statistics of estimated coe�cients from the Solow growth model under H0: li � l
(calculated using demeaned data)

m̂i l̂i ĝi t̂i

Non-oil countries �N � 102�
�LL � 4425�90�
Mean 0.3765 0.7746 0.01741 0.04799
(Standard error) (0.0209) (0.0020) (0.0026)
Median 0.3545 0.01916 0.04014
Standard deviation 0.2097 0.02003 0.02670
Minimum ÿ0�0054 ÿ0�02877 0.01233
Maximum 0.7791 0.07371 0.15476

Intermediate group of countries �N � 61�
�LL � 3039�34�
Mean 0.4093 0.8096 0.02241 0.03603
(Standard error) (0.0207) (0.0022) (0.0023)
Median 0.3922 0.02218 0.03361
Standard deviation 0.1601 0.01716 0.01781
Minimum 0.1283 ÿ0�02151 0.01200
Maximum 0.6815 0.07391 0.09310

OECD countries �N � 22�
�LL � 1396�67�
Mean 0.6815 0.7999 0.02643 0.01977
(Standard error) (0.0190) (0.0017) (0.0014)
Median 0.7072 0.02624 0.01919
Standard deviation 0.0890 0.00771 0.00660
Minimum 0.4412 0.01212 0.00916
Maximum 0.7975 0.04439 0.03409

Notes :
Estimated coe�cients relate to regression equations of the form given in the notes to Table I, but estimated by the exact
ML method subject to the restriction li � l, for all i.
See notes to Table I for further details.
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common l, to provide an indication of the quantitative importance of the bias in the cross-section
estimates of g based on Barro regressions. Assume that there is no serial correlation in the
demeaned disturbances, nit, but allow growth rates to di�er across countries so that they could be
correlated with the deterministic component of initial output, x�i0. Suppose that the true value of
l is 0.77 and the determinants of the bias match their values for the 102-country PWT sample as
derived from the estimates in Table III.11 Then equation (17) predicts that as N !1, the value
of l estimated from cross-section Barro regressions would be greater than unity, and increase
with T . This is consistent with the general failure to ®nd evidence of unconditional beta
convergence in the non-oil PWT sample. Similarly, suppose that the true value of l is 0.80 and
the determinants of the bias match their values for the OECD sample derived from Table III;12

then equation (17) predicts that the l estimated from the cross-section Barro regression with

Table IV. Summary statistics of estimated coe�cients from the Solow growth model under H0: gi � g;
li � l (calculated using demeaned data)

m̂i l̂i ĝi t̂i

Non-oil countries �N � 102�
�LL � 3990�91�
Mean 0.3765 0.9628 0.01741 0.05448
(Standard error) (0.0039) (0.0028)
Median 0.3737 0.04690
Standard deviation 0.0371 0.02859
Minimum 0.3137 0.01599
Maximum 0.4440 0.16871

Intermediate group of countries �N � 61�
�LL � 2805�97�
Mean 0.4093 0.9614 0.02241 0.04109
(Standard error) (0.0042) (0.0026)
Median 0.4026 0.03722
Standard deviation 0.0329 0.02051
Minimum 0.3499 0.01286
Maximum 0.4635 0.10490

OECD countries �N � 22�
�LL � 1328�07�
Mean 0.6815 0.9477 0.02643 0.02201
(Standard error) (0.0047) (0.0017)
Median 0.6884 0.02061
Standard deviation 0.0217 0.00789
Minimum 0.6178 0.00940
Maximum 0.7085 0.03900

Notes :
Estimated coe�cients relate to regression equations of the form given in the notes to Table I, but estimated by the exact
ML method subject to the restrictions gi � g and li � l, for all i.
See notes to Table I for further details.

11 In using equation (17) note that �g�0� � t2. The relevant estimates for the full 102 sample are: ŝ2�0 � 0�84, t̂2 � 0�0023,
and ŝ�g � 0�00299.
12 The relevant estimates in this case are ŝ2�0 � 0�21, t̂2 � 0�0004, and ŝ�g � ÿ0�00223.

GROWTH AND CONVERGENCE IN A STOCHASTIC SOLOW MODEL 373

# 1997 John Wiley & Sons, Ltd. J. Appl. Econ., 12, 357±392 (1997)



T � 10 would be 0.988, and should decline slowly with T , since ŝ�g is negative.
13 Thus there is a

clear indication that even if there was rapid convergence in individual economies from some
initial output levels, as our estimates suggest, traditional cross-section and panel procedures
would not reveal it.

4.3. The Di�erence Stationary Case

So far we have assumed that the output series can be adequately approximated by a trend
stationary model and have obtained estimates of the speed of convergence of around 30%.
Although the mean of the l̂i are quite precisely estimated, it is nevertheless subject to the familiar
downward lagged dependent variable bias. There is also a sizeable body of literature which shows
that the hypothesis of a unit root in output cannot be rejected. This poses an important problem
of how to reconcile the empirical evidence of a unit root in output with the relatively large
estimates obtained for the mean of li. This section addresses this issue, and discusses the
robustness of our results concerning the heterogeneity of growth rates to the trend stationary
assumption of the previous sections.

Turning to the ARMA(2,1) speci®cation given by equation (11c) it is clear that the hypothesis
of a unit root in output is equivalent to testing the null hypothesis that either l � 1 or r � 1.
Immediately, this presents us with the identi®cation issue already alluded to in Section 2. It is
indeed possible for l to be around 0.7, and yet leading to non-rejection of a unit root in the
output process if r is close enough to unity. This seems in fact to be the case in the PWT sample
that we consider. Using demeaned data and choosing the order of augmentation, pi, of the output
process by the Schwarz Bayesian Criterion (SBC), the ADF� pi� statistics (computed for the
trended case) rejected the unit root null in 14 of the 102 countries. Setting pi � 4 for all countries,
the null was rejected in only six countries.

It is known that ADF tests have low power and Im, Pesaran and Shin (1995) (IPS) propose a
test that increases power by exploiting the panel structure of the data. The standardized `t-bar'
test they propose is based on the average value of the Augmented Dickey±Fuller statistic,
tiT � pi; ĝi�, i � 1; 2; . . . ;N, based on the ADF with trend regression of order pi, on a sample of T
observations, where ĝi is the estimated vector of coe�cients on the augmented lagged changes.
The standardized t-bar statistic is then simply calculated as

�zNT �

1

N

XN
i�1

tiT � pi; ĝi� ÿ
1

N

XN
i�1

E�tT � pi; 0����������������������������������������
1

N2

XN
i�1

V �tT � pi; 0��
vuut �22�

IPS show that under the null hypothesis, when N and T are large and
����
N
p

=T small, this statistic
has a standard normal distribution. Asymptotically, the e�ect of assuming that gi � 0 in the
computation of the expected values and the variances of the individual ADF statistics on the
t-bar statistic will become negligible. The values of E�tT � pi; 0�� and V �tT � pi; 0�� are tabulated in
IPS.

13 Notice, however, that in the case of the OECD sample, the large N assumption required to derive equation (17)
may not be valid.
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Using the SBC criterion to determine pi, the test statistics on the demeaned data using equation
(22) were ÿ2�628 for the full sample, which rejects the null at standard signi®cance levels, ÿ0�442
for the intermediate, and 0.213 for the OECD. Setting pi � 4 for all countries the test statistics
were ÿ1�146, 1.871, and 0.983, none of which reject the null. Given the sensitivity of the tests to
underestimation of the degree of augmentation the conclusion is that these test statistics provide
little evidence to reject the unit root null.

Kwiatkowski et al. (1992) propose a test in which the null is stationarity and involves testing
whether the variance of the stochastic trend component of the series is zero. The test is semi-
parametric and requires choice of a truncation parameter, which sets the window size for the
spectral density estimator that underlies the computation of the test statistics. The number of
countries rejecting the null of stationarity fell from 96 when the truncation remainder was set at
zero, to 51 when it was set at four, and to nine when set at eight. Thus stationarity is still rejected
in the case of half of the countries in the sample unless the truncation parameter is set very high.

Tables V and VI provide the results of the estimates of the AR processes for demeaned output
growth rates for the countries in our dataset, assuming that there is a unit root in the log per
capita output series. The model is given by

Dxit � gi � uit where uit � g1iui;tÿ1 � g2iui;tÿ2 � eit
i � 1; 2; . . . ;N

t � 1965; . . . ; 1989
�23�

which can be viewed as an autoregressive approximation to equation (11c) with r � 1. These
equations were estimated both allowing gi to di�er across countries (Table V) and imposing a
common gi � g (Table VI). The results of Table V indicate that there are considerable variations
in the estimates of gi, g1i, and g2i across all country groupings. The values of gi are generally
precisely estimated, and are similar in magnitude to the estimates of gi obtained for the trend-
stationary versions of the model presented in Table I, while g1i and g2i are usually statistically
signi®cant.14 Comparison of the results in Table V with those in Table VI shows that the
imposition of the common growth rate has a considerable e�ect on the estimates of g1i and g2i in
the Non-Oil and Intermediate country groupings, but not in the OECD case. A common growth
rate is rejected on the demeaned data, LR statistics (95% critical values) are 278.1 (124.3), 143.6
(79.08), and 41.6 (32.67) for the three samples. On the original data, not demeaned, growth rate
homogeneity is also rejected in the full and intermediate sample, but not in the OECD, where the
LR statistic is 30.25.
Therefore, irrespective of whether there exists a unit root in the output process, the hypothesis

of a common technological growth rate across countries is strongly rejected.

4.4. Sigma Convergence

If there is no common steady-state growth rate, then the whole notion of beta convergence
including conditional beta convergence has little economic meaning. However, even with hetero-
geneous growth rates, the model has implications for sigma convergence. Appendix D derives an

14 The model was also estimated subject to the restrictions that H0a: g1i � g2i � 0, and H0b: g2i � 0 for all i. The log
likelihood ratio statistics for testing these restrictions in the Non-Oil, Intermediate and OECD countries are, respectively:
H0a: 331.47 (234.0), 222.54 (146.6), and 62.53 (61.66)
H0b: 148.60 (124.3), 95.26 (79.08), and 22.45 (33.92)

where 95% critical values are in parentheses. These tests suggest that at least an AR(2) process is required to adequately
capture the dynamics in the output growth series.
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equation that describes the evolution of the cross-section variance of output, s2t . The change in
variance from an initial value s20 is given by:

s2t � l2ts20 � �1 ÿ l2t�s2�0 �
1 ÿ l2t

1 ÿ l2

� �
t2 � t

2s2g � 2ts0g �24�

where s2�0 is the variance of the deterministic component of initial output, t2 is the average
variance of the time-series (demeaned) disturbances, s2g is the cross-section variance of the growth
rate of technology, and s0g is the covariance between the technology growth rate and initial
output. Notice that very similar terms appear in equation (24) to those determining the bias of
the Barro regression discussed in Section 3.1.

Table V. Summary statistics of estimated coe�cients from the output growth model in the unit root case
(calculated using demeaned data)

ĝi ĝ1i ĝ2i t̂i

Non-oil countries �N � 102�
�LL � 4461�36�
Mean 0.01768 0.1037 ÿ0�1051 0.05182
(Standard error) (0.0019) (0.0285) (0.0219) (0.0030)
Median 0.01892 0.0927 ÿ0�1006 0.04344
Standard deviation 0.01905 0.2865 0.2196 0.02992
Minimum ÿ0�02457 ÿ0�5555 ÿ0�6016 0.01309
Maximum 0.07268 0.9817 0.4063 0.18084

Intermediate group of countries �N � 61�
�LL � 3089�54�
Mean 0.02230 0.1640 ÿ0�1113 0.03821
(Standard error) (0.0021) (0.0362) (0.0290) (0.0026)
Median 0.02156 0.2081 ÿ0�1168 0.03460
Standard deviation 0.01659 0.2827 0.2265 0.01991
Minimum ÿ0�01789 ÿ0�4206 ÿ0�6235 0.01239
Maximum 0.07256 0.9162 0.4135 0.10282

OECD countries �N � 22�
�LL � 1411�46�
Mean 0.02760 0.1534 ÿ0�0117 0.02092
(Standard error) (0.0018) (0.0526) (0.0369) (0.0016)
Median 0.02692 0.2457 ÿ0�0127 0.02011
Standard deviation 0.00814 0.2412 0.1691 0.00724
Minimum 0.01286 ÿ0�4152 ÿ0�4209 0.01008
Maximum 0.04610 0.5442 0.2749 0.03638

Notes :
Estimated coe�cients relate to regression equations of the form

D�xit ÿ �xt� � gdi � udit where udit � g1iu
d
i;tÿ1 � g2iu

d
i;tÿ2 � edit i � 1; 2; . . . ;N

t � 1965; . . . ; 1989

estimated for each country by the exact ML method. Estimates of gi are obtained using the formulae ĝi � �̂g � ĝdi , where
�̂g is estimated using the aggregate equation � �xt � �g � �ut, where �ut � �g1 �utÿ1 � �g2 �utÿ2 � �et, and

�xt � Nÿ1
XN
i�1

xit

See notes to Table I for further details.
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The result in equation (24) has a number of features worth noting. First, all the terms are
necessarily non-negative except s0g. Therefore a negative value of this covariance is a necessary
condition for sigma convergence. If s2g � 0, s2t converges to a constant, which is independent of
the initial variance and is equal to s2�0 � t2=�1 ÿ l2�. If s2g is non-zero, s2t will eventually increase,
but in the short run could go either up or down. In the long run, the distribution of gi determines
the time evolution of the cross-section distribution of output. If the distribution of gi is bimodal,
for example high in rich countries and low in poor countries, this could give rise to the type of
bimodal distribution discussed by Quah (1996) and Bianchi (1996).

We used formula (24) to predict the variance of output in the three samples. Figures 1 and 2
plot predicted and sample variances using the estimates in Tables III and IV, respectively.15 Note
that unlike Evans (1996b) who also analyses the variance, these predictions were not derived from
the variance data itself, but by the direct application of the formula in equation (24). The
predicted values in Figure 1 are based on the estimates in Table III, which do not impose
homogeneity in the growth rates, while the predicted values in Figure 2 are computed using the

15 The relevant estimates of s20, s
2
�0, s

2
g, s0g and t2 used to compute the predicted values of s2t are summarized in

Table VII.

Table VI. Summary statistics of estimated coe�cients from the output growth model in the unit root case
under H0: gi � g (calculated using demeaned data)

ĝi ĝ1i ĝ2i t̂i

Non-oil countries �N � 102�
�LL � 4322�31�
Mean 0.01827 0.2023 ÿ0�0091 0.05424
(Standard error) (0.0280) (0.0225) (0.0030)
Median 0.2432 ÿ0�0036 0.04705
Standard deviation 0.2812 0.2262 0.03033
Minimum ÿ0�5409 ÿ0�5227 0.01493
Maximum 1.0257 0.5082 0.18222

Intermediate group of countries �N � 61�
�LL � 3014�75�
Mean 0.02308 0.2487 ÿ0�0306 0.04012
(Standard error) (0.0351) (0.0287) (0.0027)
Median 0.2664 ÿ0�0411 0.03501
Standard deviation 0.2740 0.2243 0.02071
Minimum ÿ0�4237 ÿ0�4933 0.01289
Maximum 0.9874 0.4875 0.10599

OECD countries �N � 22�
�LL � 1390�67�
Mean 0.02726 0.2169 ÿ0�0606 0.02175
(Standard error) (0.0541) (0.0366) (0.0017)
Median 0.3123 ÿ0�0523 0.02068
Standard deviation 0.2477 0.1678 0.00759
Minimum ÿ0�2947 ÿ0�3965 0.01010
Maximum 0.5508 0.2872 0.03888

Notes :
Estimated coe�cients relate to regression equations of the form given in Table V, but estimated by the exact ML method
subject to the restriction gi � g, for all i.
See notes to Table I for further details.
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Figure 1. Evolution of cross-section variances of log per capita output (actual sample values and
predictions based on Table III). Predicted values are computed using equation (24) and the parameter

estimates obtained from the results of Table III
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Figure 2. Evolution of cross-section variances of log per capita output (actual sample values and
predictions based on Table IV). Predicted values are computed using equation (24) and the parameter

estimates obtained from the results of Table IV
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estimates in Table IV, which do impose homogeneity of growth rates. The plots in Figure 1 match
the data rather well, and much better than those in Figure 2. This suggests that growth rate
heterogeneity is a major force driving the variance of output. Because growth rate heterogeneity
is rather low in the OECD, the predicted OECD variance shows a downward trend over the
whole period in Figure 1. However, equation (24) predicts that even in the case of the OECD
sample the growth rate heterogeneity (if it persists) will eventually dominate and start causing the
predicted variance to rise.

5. CONCLUSIONS

The stochastic Solow model provides a tight theoretical framework within which the growth
process can be systematically interpreted and has implications which are rather di�erent from
the standard deterministic version. The empirical analysis of the logarithm of per-capita output,
output for short, in this paper indicates that data for 102 countries over the last 30 years
strongly rejects the hypothesis that technology growth rates are equal across countries. While it
is well known that growth rates di�er, the econometric implications of ignoring growth rate
heterogeneity do not seem to have been appreciated. We examine the econometric properties of
estimators of beta convergence, as traditionally de®ned, in cross-section and pooled datasets

Table VII. Estimated cross-country variances and covariances

Non-oil Intermediate OECD
(102) (61) (22)

ŝ20 0.74510 0.64840 0.26820

Estimated statistics based on the results of Table III
l̂ 0.77460 0.80960 0.79990
ŝ2�0 0.84000 0.71380 0.21470
ŝ2 0.00040 0.00029 0.00006
t̂2 0.00230 0.00130 0.00039
ŝ�g 0.00299 ÿ0�00146 ÿ0�00223
ŝ0g 0.00301 ÿ0�00130 ÿ0�00274
Estimated statistics based on the results of Table IV
l̂ 0.96280 0.96140 0.94770
ŝ2�0 0.99180 0.72830 0.17290
t̂2 0.00297 0.00169 0.00048

Notes :

ŝ20 � �N ÿ 1�ÿ1
XN
i�1
�xi0 ÿ �x0�2

is the sample estimate of the cross-section variance of log per capita output in the base year (1960), ŝ2�0 is the sample
estimate of the variance of x�i0, the deterministic component of the output in the base year, ŝ�g and ŝ0g are the sample
estimates of the covariances of gi (growth rate of technology) with xi0 and x�i0, respectively;

ŝ2g � �N ÿ 1�ÿ1
XN
i�1
�ĝi ÿ �̂g0�2

is the sample estimate of the cross-section variance of technology growth rates, l̂ and t̂2 are the ML estimates of l and t2

from Tables III and IV.
Note that since the estimates in Table IV assume gi � g, then s�g � s0g � s2g � 0.
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and derive their asymptotic biases. When the homogeneity assumption is relaxed, estimated
speeds of beta convergence increase from the 2% per annum found in cross-section to an
average of around 30% per annum. This changes the mean adjustment lag from 49 years to
2.33 years. However, this coe�cient is relatively imprecisely estimated and the interpretation of
it as a measure of beta convergence is highly questionable in the context of a stochastic Solow
growth model.

Despite the much higher estimates we obtain for the speed of convergence, we cannot reject
the null hypothesis of a unit root in the output process. However, failure to reject this null is not
evidence against the Solow model. In the stochastic Solow model which we analyse the coe�cient
of the lagged dependent variable in Augmented Dickey±Fuller type regressions will be
�1 ÿ l��1 ÿ r�, where r is the serial correlation coe�cient of the technology process and
�1 ÿ l� � �1 ÿ a��n � g � d ÿ h�, where a is the capital exponent, n the rate of population
growth, g the rate of growth of technology, d the depreciation rate, and h depends on the
di�erence between the deterministic steady-state solution and the mean of the stochastic steady-
state distribution of the e�ective capital labour ratio. Tests for a unit root in the output process
thus test whether �1 ÿ r��1 ÿ a��n � g � d ÿ h� � 0. These tests are likely to lack power,
particularly because the stochastic Solow model we analyse suggests that the disturbance in the
output equation will have a moving-average form with an MA root close to minus unity. In these
circumstances the probability of rejecting the null when the root of the AR part of the output
equation is close to unity is likely to be low, despite the more powerful panel tests we employ.
Even putting aside the power issue, the unit root hypothesis does not relate directly to the speed
of convergence or the capital exponent. Each of the three components �1 ÿ r�, �1 ÿ a�, and
�n � g � d ÿ h� could have plausible values, e.g. 0.1, 0.66 and 0.08, yet the product of them,
0.005, would be indistinguishable from zero. The conventional interpretation would be valid only
if r � 0 and h � 0, neither of which are likely.

In the context of a stochastic model, traditional estimates of beta convergence do not have their
usual interpretation. When growth rates of technology di�er across countries the speed of
convergence is informative only about the within country output movements. However, this
growth heterogeneity will be the major determinant of the cross-country output dispersion. Our
estimates indicate that growth of technology has been higher in OECD countries with a smaller
dispersion as compared to the world as a whole. In consequence, global dispersion is increasing:
countries are diverging, not converging.

APPENDIX A: ASYMPTOTIC BIAS IN THE `BARRO CROSS-SECTION REGRESSION'

The Barro cross-section regression is derived by iterating on equation (13) to obtain

xiT ÿ xi0 �
1 ÿ lT

1 ÿ l

� �
mi � �1 ÿ l�

XT
j�1

jlTÿ j
 !

gi ÿ �1 ÿ lT �xi0 � xiT �A1�

for i � 1; 2; . . . ;N, where

xiT �
XTÿ1
j�0

ljei;Tÿ j �A2�
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Also from equation (13a)

mi � ligi � �1 ÿ li�x�i0 �A3�

where

x
�
i0 � ai0 � ccccccc0wi ÿ

ahi
1 ÿ li

� �
�A4�

ccccccc � a
1 ÿ a

;
ÿa

1 ÿ a

� �0
and wi � �log si; log�ni � gi � d ÿ hi��0.

The Barro regression assumes li � l, i � 1; 2; . . . ;N, and involves regressing xiT ÿ xi0 on xi0,
and then recovering an estimate of l from that of bT � lT ÿ 1, the coe�cient of xi0, for a ®nite T
and a large enough value of N. In this appendix we consider the properties of the OLS estimator
of bT for su�ciently large N and a ®nite T under the following assumptions:

Assumption A1: The disturbances, eit, follow the two-factor model

eit � Zt � nit i � 1; 2; . . . ;N; t � 1; 2; . . . ;T �A5�
and the country-speci®c components, nit, are independently distributed across i, and follow
general stationary processes with zero means and autocovariances gi�s� � 0; 1; 2; . . .

Assumption A2: The various components of mi (i.e. gi; ai0;wi; hi� and nit are independently
distributed both across i and t, and are assumed to be generated from a common distribution with
mean m and the variance s2m. Speci®cally we assume

gi � iid�g; s2g�; x
�
i0 � iid�x�0; s2�0� �A6�

m � lg � �1 ÿ l�x�0 �A7�
and

s2m � l2s2g � �1 ÿ l�2s2�0 � 2l�1 ÿ l�s�g �A8�
where s�g stands for the covariance of x�i0 and gi which in general will be non-zero, unless, of
course, gi � g.16

The estimate of bT based on Barro's regression is given by

b̂T �

XN
i�1
�xiT ÿ xi0��xi0 ÿ �x0�

XN
i�1
�xi0 ÿ �x0�2

�A9�

16 Using equation (A4) note that

s�g � Cov�x�i0; gi� � Cov�ai0; gi� � ccccccc0 Cov�wi; gi� ÿ
a

1 ÿ l

� �
Cov�hi; gi�

and since wi depends on gi, it is unlikely that s�g will be zero when s2g > 0.
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where

�x0 � N
ÿ1XN

i�1
xi0

Now using equation (A3) in (A1) and noting that

�1 ÿ l�
XT
j�1

jlTÿ j � T ÿ l�1 ÿ lT �
1 ÿ l

we have

xiT ÿ xi0 � �1 ÿ lT �x�0 � Tg ÿ �1 ÿ lT �xi0 � ViT �A10�

or

� aT � bTxi0 � ViT

where

ViT � �1 ÿ lT ��x�i0 ÿ x
�
0� � T�gi ÿ g� � xiT �A11�

Also using equation (13) to solve for xi0 assuming that the process has started a long time in the
past, we have17

xi0 � x
�
i0 �

X1
j�0

ljei;ÿ j �A12�

or using equation (A5):

xi0 ÿ �x0 � x
�
i0 ÿ �x

�
0 � di0 �A13�

where

di0 �
X1
j�0

lj�ni;ÿ j ÿ �nÿ j�

�x
�
0 � N

ÿ1XN
i�1

x
�
i0; and �nÿ j � N

ÿ1XN
j�1

ni;ÿ j �A14�

17 In deriving this result we have made use of the identityX1
j�0

jlj � l=�1 ÿ l�2

and the fact that x�i0 � �mi ÿ lgi�=�1 ÿ l�. See equation (A3) above.
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Substituting equation (A10) in (A9) we have

cbT ÿ bT �

XN
i�1

ViT �xi0 ÿ �x0�

XN
i�1
�xi0 ÿ �x0�2

Now using equation (A13) and noting that under Assumption A2, nit are independently distri-
buted of x�i0 and gi, we obtain

Plim
N!1

�cbT � ÿ bT �
A � B � C

D
�A15�

where

A � �1 ÿ lT � Lim
N!1

N
ÿ1XN

i�1
E��x�i0 ÿ x

�
0��xi0 ÿ �x0��

( )
� �1 ÿ lT �s2�0

B � T Lim
N!1

N
ÿ1XN

i�1
E��gi ÿ g��xi0 ÿ �x0��

( )
� Ts�g

C � Lim
N!1

N
ÿ1XN

i�1
E�xiTdi0�

( )
and

D � s2�0 � Lim
N!1

N
ÿ1XN

i�1
E�d2

i0�
( )

However, using equations (A2) and (A14) it can be shown that

E�xiTdi0� � 1 ÿ 1

N

� �XT
j�1

X1
k�0

lTÿ j�kgi� j � k�

and

E�d2
i0� � 1 ÿ 1

N

� �
gi�0�
1 ÿ l2

� 2
X1
k�1

lkgi�k�
1 ÿ l2

( )
Substituting the above results in equation (A15) we ®nally have:

Plim
N!1

�cbT � ÿ bT �
�1 ÿ lT �s2�0 � Ts�g �

XT
j�1

X1
k�0

lTÿ j�k �g� j � k�

s2�0 �
1

1 ÿ l2

� �
�g�0� � 2

X1
k�1

lk �g�k�
( ) �A16�

384 K. LEE, M. H. PESARAN AND R. SMITH

J. Appl. Econ., 12, 357±392 (1997) # 1997 John Wiley & Sons, Ltd.



where

�g�s� � Lim
N!1

N
ÿ1XN

i�1
gi�s�

" #
It is clear from this result that the estimator of bT (and hence that of l) obtained from the

Barro cross-section regression in general will be inconsistent. The conditions under which cbT is
a consistent estimator of bT are very stringent and require (1) homogeneity of growth rates,
(2) serially uncorrelated nit's, and (3) s2�0 � V�x�i0� � 0. The last restriction is extremely unlikely
to be satis®ed in practice even if observable components of x�i0 (namely si and ni� are included in
the regression.18 This is because x�i0 will continue to depend on the unobservable country-speci®c
initial endowment e�ects, ai0, which are unlikely to be identical across i.
The asymptotic bias expression in equation (A16) simpli®es considerably if we follow the

literature and assume that the technology growth rates are identical across countries (i.e. gi � g�,
and nit's are serially uncorrelated (i.e. �g�k� � 0, k � 1; 2; . . .�. Under these restrictions the
asymptotic bias is positive for all parameter values and is given by

Plim
N!1

�cbT � ÿ bT �
�1 ÿ lT �s2�0
s2�0 �

t2

1 ÿ l2

�A17�

where t2 � �g�0�. In order to get some idea of the quantitative importance of the bias in this case
we rewrite equation (A17) as

Plim
N!1

�clT � � lT � 1 ÿ lT

1 � q
� 1 ÿ qlT

1 � q

where

q � t2=�1 ÿ l2�
s2�0

which is the ratio of the average long-run time-series variance of nit to the cross-section variance
of x�i0.

19 In situations where the time-series variance is small relative to the cross-section variance
(which seems to be the case in practice), q will be small and l̂ will be biased towards unity even if
the true value of l is equal to zero.

APPENDIX B: ASYMPTOTIC BIAS OF THE POOLED `FIXED-EFFECT'
ESTIMATOR OF THE CONVERGENCE PARAMETER UNDER

HETEROGENEOUS GROWTH RATES

Consider the model

xit � mi � yit � lxi;tÿ1 � eit i � 1; 2; . . . ;N
t � 1; 2; . . . ;T

�B1�

18 The Barro regression with si and ni included as additional regressors is known as the `conditional Barro regression'.
19 The exact expression for s2�0 in terms of the structural parameters of the stochastic Solow model can be obtained using
equation (A4) and depend on the variance and covariances of ai0, si, ni, and hi (assuming li � l and gi � g�.
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where yi � gi�1 ÿ l�, and suppose that l is estimated ignoring the heterogeneity of the growth
rates, gi, by pooling the time-series processes xit across i and treating mi as unobservable ®xed
e�ects. Denoting the pooled `®xed-e�ect' estimator of l by l̂FE we have (see, for example, Pesaran
and Smith, 1995),

ŷFE
l̂FE

 !
�

N�t0THT t
0
T �

XN
i�1

t
0
THTxi;ÿ1XN

i�1
t
0
THTxi;ÿ1

XN
iÿ1

x
0
i;ÿ1HTxi;ÿ1

0BBBB@
1CCCCA
ÿ1 XN

i�1
t
0
THTxiXN

i�1
x
0
i;ÿ1HTxi

0BBBB@
1CCCCA �B2�

where HT � IT ÿ tttttttT �ttttttt 0TtttttttT �ÿ1tttttttT , tttttttT � �1; 1; . . . ; 1�0, tT � �1; 2; . . . ;T�0, xi � �xi1; xi2; . . . ;
xiT �0, and xi;ÿ1 � �xi0; xi1; . . . ; xi;Tÿ1�0. Substituting xit from equation (B1) in (B2) yields

ŷFE ÿ �y

l̂FE ÿ l

 !
�
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where

�y � N
ÿ1XN

i�1
yi

and eeeeeeei � �ei1; ei2; . . . ; eiT �0.
Now using equation (B1) and noting that j l j < 1, we can solve for xit as

xit �
mi

1 ÿ l
� yi

1 ÿ l
t ÿ l

1 ÿ l

� �
�
X1
j�0

ljei;tÿ j

or in vector notation (recall that gi � yi=�1 ÿ l��,

xi �
1

1 ÿ l

� �
mi ÿ

lyi
1 ÿ l

� �
tttttttT � gitT �

X1
j�0

ljeeeeeeei;ÿ j

where eeeeeeei;ÿ j � �ei;1ÿ j; ei;2ÿ j; . . . ; ei;Tÿ j�0. Similarly,

xi;ÿ1 �
1

1 ÿ l

� �
mi ÿ

yi
1 ÿ l

� �
tttttttT � gitT �

X1
j�0

ljeeeeeeei;ÿ jÿ1
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Using this result, we obtain the following expressions for the various sums in equation (B3):
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where

�g � N
ÿ1XN

i�1
gi; and �eeeeeeeÿ j � N
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i�1

eeeeeeei;ÿ j
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(with �eeeeeee0 � �eeeeeee�. The dominant term of these summations is t0THT tT which is of order T3. Hence,
for large enough T , and assuming that

N
ÿ1XN

i�1
�gi ÿ �g�2 > 0;

we have

Plim
T!1

ŷFE ÿ �y
l̂FE ÿ l

 !
�

1 �g

�g

XN
i�1

g
2
i

N

26664
37775
ÿ1 0

�1 ÿ l�

XN
i�1
�gi ÿ �g�2

N

26664
37775

and hence, noting that �y � �g�1 ÿ l�,

Plim
T!1

�ŷFE� � 0; Plim
T!1

�l̂FE� � 1 �B4�

Note that these results hold for any ®nite N, so long as

N
ÿ1XN

i�1
�gi ÿ �g�2 > 0

In the case where eit has a common component as speci®ed in equation (18), then this can be
removed by demeaning and equation (B1) takes the form of equation (20). Using derivations
along the lines given above, it can be shown that variation in the gi will cause bias. But to obtain
equation (B4) we need N su�ciently large so that Cov�eit ÿ �et; ejt ÿ �et� � 0, for i 6� j.

APPENDIX C: EXACT MAXIMUM LIKELIHOOD ESTIMATION OF SOLOW
GROWTH MODEL UNDER THE NULL HYPOTHESIS, H0: gi � g; 8i

The output process under the Solow model is given by equation (13) or, equivalently, by
equation (14):

xit � ci � git � uit
uit � liui;tÿ1 � eit

Here for the purpose of maximum likelihood (ML) estimation we also assume that eit � N�0; t2i �.
The procedure described below can also be applied to the demeaned data.
Under the assumption of Solow's model where j li j < 1, and assuming the output processes

began a long time before the start of the observations in 1960, the exact log-likelihood function
for the ith country output process is given by

li�yyyyyyyi � � ÿ
T

2
log�2pt2i � �

1

2
log�1 ÿ l2i � ÿ

1

2t2i
e0iR�li�ei �C1�
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where

ei � xi ÿ citttttttT ÿ gitT

xi � �xi1; xi2; . . . ; xiT �0
tttttttT � �1; 1; . . . ; 1�0; tT � �1; 2; . . . ;T�0

R�li� �

1 ÿli 0 0 . . . 0

ÿli 1 � l2i ÿli 0 . . . 0

0

..

.

0 . . . . . . ÿli 1 � l2i ÿli
0 . . . . . . ÿli 1

26666666664

37777777775
and yyyyyyyi � �ci; gi; li; t2i �0, for i � 1; 2; . . . ;N. Moreover, since eit's are assumed to be independently
distributed across i, the log-likelihood function for the whole system of output equations is
given by

l�yyyyyyy� �
XN
i�1

li�yyyyyyyi� �C2�

where yyyyyyy � �yyyyyyy01; yyyyyyy02; . . . ; yyyyyyy0N�0.
In the unrestricted case where it is not required for gi to be the same across countries, the exact

ML estimators of yyyyyyyi can be obtained by application of standard algorithms to the log-likelihood
function of each country separately. (See, for example, Pesaran and Pesaran, 1997.)

Under the restrictions H0: gi � g, the exact ML estimators of the Solow model for di�erent
countries can be obtained by maximizing l�yyyyyyy� directly. We ®rst note that, for a given g � g� j�, the
ML estimators of ci, li, and t2i are given by the regression of �xit ÿ g� j�t� on an intercept, where
the disturbances are assumed to follow an AR(1) process, estimated using the exact ML method
(see above). This provides estimates of ci, li, t

2
i which we denote by ĝ�g� j��, l̂i�g� j��, and t̂i�g� j��,

respectively. To estimate g we note that

@l�yyyyyyy�
@g
� 1

2

XN
i�1

t0TR�li��xi ÿ ditttttttT ÿ gtT �
t2i

� �
and for given values of li, ci, and t2i , i � 1; 2; . . . ;N, the estimator of g is given by

ĝ�ccccccci � �

XN
i�1

t0TR�li�xi ÿ dit
0
TR�li�tttttttT

t2i

� �
XN
i�1

t0TR�li�tT
t2i

� � �C3�

where ccccccci � �li; ci; t2i �0. The above results suggest the following iterative numerical procedure for
estimating the parameters of the cross-country output processes under gi � g; 8i:
Step 1: Fix g � ĝ�1�, where ĝ�1� is the mean value of the estimates of gi over i � 1; 2; . . . ;N
obtained under the unrestricted model.
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Step 2 : Estimate the regression of fxit ÿ ĝ�1�g on an intercept, assuming the disturbances have
an AR(1) process, and thereby obtain estimated values of li, ci, and t2i denoted l̂i�ĝ�1��, ĉi�ĝ�1��,
and t̂i�g�1��, respectively. Calculate the system-wide value of the log-likelihood function, l�ŷyyyyyy�1��.
Step 3 : Use equation (C3) to obtain an estimate of g, denoted by ĝ�2�, based on the estimated
values l̂i�ĝ�1��, ĉ�ĝ�1�� and t̂i�g�1�� in Step 2.
Step 4 : Repeat Steps 1 and 2 with ĝ� j� replaced by ĝ� j�1� for j � 1; 2; . . . ; until the di�erences
between successive estimates of yyyyyyy and the di�erences in the maximized log-likelihood values in
successive iterations are su�ciently small.

APPENDIX D: EVOLUTION OF CROSS-COUNTRY DISPERSION
OF PER CAPITA OUTPUT IN THE SOLOW MODEL

In this appendix we examine the implications of the stochastic Solow model for sigma
convergence. We follow the assumptions and de®nitions set out in Appendix A, and also assume
that li � l. Then, using equation (A1) and noting that

�1 ÿ l�
XT
j�1

jlTÿ j � l�1 ÿ lT �=�1 ÿ l� � T

it is easily seen that

xiT � lTxi0 � �1 ÿ lT �x�i0 � Tgi � xiT �D1�
while a demeaned version of equation (D1) is given by

�xiT ÿ �xT � � lT �xi0 ÿ �x0� � �1 ÿ lT ��x�i0 ÿ �x
�
0� � T�gi ÿ �g� � diT �D2�

where

diT � xit ÿ �xT �
XTÿ1
j�0

lj�ni;Tÿ j ÿ �nTÿ j�

Now, squaring, averaging across i, and taking probability limits of both sides of equation (D2)
as N !1, and noting that under Assumption A1, nit is distributed independently of xi0 and x�i0,
we obtain

s2T � l2Ts20 � �1 ÿ lT �2s2�0 � T
2s2g � s2dT

� 2lT �1 ÿ lT �Cov�xi0; x�i0� � 2TlTs0g � 2T�1 ÿ lT �s�g
�D3�

where20

s2T � Var�xiT � � Plim
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1

N
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" #
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1

N

XN
i�1
�xiT ÿ �xT �2

" #
� t2
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20 For expositional simplicity the expression for s2dT in equation (D4) is derived assuming that nit's are not serially
correlated.
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t2 � Var�nit�, and

t2 � Lim
N!1

1

N

XN
i�1

t2i

 !
�D5�

It is worth noting here that s2T is the cross-section variance of (log) per capita output at time T ,
s2dT is the variance of the diT , and s2�0 is the cross-country variance of the deterministic compo-
nents of the initial output, x�i0, and s0g (respectively, s�g� is the cross-country covariance between
xi0 (respectively, x

�
i0� and gi. Also using equation (A13) we have

s0g � s�g and Cov�xi0; x�i0� � Var�x�i0� � s2�0 �D6�
Finally, using equations (D4) and (D6) in (D3) and simplifying, we have

s2T � l2Ts20 � �1 ÿ l2T �s2�0 �
1 ÿ l2T

1 ÿ l2

� �
t2 � T

2s2g � 2Ts0g �D7�

which describes the evolution of cross-country variance of output in terms of the initial cross-
country variances of initial output �xi0�, its deterministic component �x�i0�, the dispersion in the
growth rates of technology �gi�, and the covariance of the initial output and gi.
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